Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells.
نویسندگان
چکیده
The development of multidrug resistance 1 (MDR1) can be mediated by a number of different mechanisms but elevated gene expression of MDR1 (P-glycoprotein) has often been a major cause of chemoresistance in many cancer cells. Therefore, the present study aimed to investigate the role of forkhead box-containing protein, O subfamily (FoxO), transcription factors in regulating the MDR1 gene expression. The proximal promoter region of the human MDR1 contained a putative FoxO-binding site, which partially overlapped with the enhancer/enhancer-binding protein beta-binding region. Gel shift and immunoblot analysis of subcellular fractions revealed that nuclear levels of FoxO1 and its DNA-binding activity were selectively enhanced in MCF-7/ADR cells, which was reversed by a FoxO1 antibody. Reporter gene assays showed that the transcription of MDR1 gene is stimulated by FoxO1 overexpression. Moreover, both MDR1 expression and doxorubicin resistance in MCF-7/ADR cells were reversed by FoxO1 small interfering RNA (siRNA). The MDR1 expression in MCF-7/ADR cells was also inhibited by insulin, a functional FoxO1 inactivator. In conclusion, FoxO1 is a novel transcriptional activator of MDR1 and is crucial for MDR1 induction in MCF-7/ADR cells.
منابع مشابه
Cross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کاملCross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کاملMir-183 and FOXO1 gene expression changes in peripheral blood mononuclear cells of breast cancer patients
Background and Aim: Today, cancer is considered as a major health problem and affects the health of society. Breast cancer is the second leading cause of cancer death in women after lung cancer. According to epidemiological studies, cancer is the second most common cause of death after cardiovascular disease worldwide and the third leading cause of death after cardiovascular disease and acciden...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملAmurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down-regulation of multidrug resistance 1.
The transition from a chemotherapy-responsive cancer to a chemotherapy-resistant one is accompanied by increased expression of multidrug resistance 1 (MDR1, p-glycoprotein), which plays an important role in the efflux from the target cell of many anticancer agents. We recently showed that a Forkhead box-containing protein of the O subfamily 1 (FoxO1) is a key regulator of MDR1 gene transcriptio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 29 9 شماره
صفحات -
تاریخ انتشار 2008